
Embedded C
Coding Standard

Embedded C
Coding Standard

by Michael Barr

Keeps Bugs Out

® Edition: BARR-C: 2018 | barrgroup.com

BARR-C:2018

Embedded C Coding Standard

Embedded C Coding Standard

 ii

 Embedded C Coding Standard

 iii

Embedded C Coding Standard

by Michael Barr

 Edition: BARR-C:2018 | barrgroup.com

Embedded C Coding Standard

 iv

Embedded C Coding Standard

by Michael Barr

Copyright © 2018 Integrated Embedded, LLC (dba Barr Group). All rights reserved.

Published by:

Barr Group
20251 Century Blvd, Suite 330
Germantown, MD 20874

This book may be purchased in print and electronic editions. A free online edition is
also available. For more information see https://barrgroup.com/coding-standard.

While every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein. Compliance with the
coding standard rules in this book neither ensures against software defects nor legal
liability. Product safety and security are your responsibility.

Barr Group, the Barr Group logo, The Embedded Systems Experts, and BARR-C are
trademarks or registered trademarks of Integrated Embedded, LLC. Any other
trademarks used in this book are property of their respective owners.

ISBN-13: 978-1-72112-798-6
ISBN-10: 1-72112-798-4

 Embedded C Coding Standard

 v

Document License

By obtaining Barr Group’s copyrighted “Embedded C Coding Standard” (the “Document”), you are agreeing to be bound by
the terms of this Document License (“Agreement”).

1. RIGHTS GRANTED. For good and valuable consideration, the receipt, adequacy, and sufficiency of which is hereby
acknowledged, Barr Group grants you a license to use the Document as follows: You may publish the Document for your own
internal use and for the use of your internal staff in conducting your business only. By obtaining a copy of the Document, you
expressly agree to the terms of this Agreement.

2. RIGHTS RESERVED. Except as expressly permitted herein, no rights in or to the Document are granted to you. Barr Group
(on behalf of itself and its Affiliates) retains all other rights in and to the Document, anywhere in the world. Specifically, you
acknowledge and agree: (i) that Barr Group holds the copyright for the Document; (ii) that the Document and any works
derived therefrom may not be published or shared except as permitted in Section 1 above; (iii) that you shall take appropriate
measures regarding limitations on publishing and sharing, including the incorporation of appropriate copyright markings and
notations on limitations of publishing and sharing, as described in this Agreement. If you fail to include these required
copyright markings and notations, you agree that such copies are unauthorized copies of the copyright material and that these
unauthorized copies infringe Barr Group’s copyright of the Document. If you prepare any new works, translations or
derivative works from the Document, you hereby agree that your rights for these new works, translations, or derivative works
are limited to your private (e.g., company internal) use.

3. DISCLAIMERS AND LIMITATION ON LIABILITY. You agree to hold harmless, defend, and indemnify Barr Group, its
owners and officers, employees, and subcontractors, to the full extent permitted by law, for any claims brought in relation to,
or use of, the Document. You bear full responsibility for determining whether the contents of the Document and its derivations
are safe and appropriate for the purposes of your uses. In addition: (a) THE DOCUMENT IS PROVIDED “AS IS” WITHOUT
REPRESENTATION OR WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
BARR GROUP EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, STATUTORY, EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED, TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT WITH REGARD TO THE DOCUMENT. (b) In no event shall Barr
Group be liable for any damages whatsoever (including, but not limited to, special, incidental, consequential, or indirect
damages for personal injury, any and all other third party claims, loss of business profits, business interruption, loss of
business information, or any other pecuniary loss, attorneys’ fees and litigation costs) resulting from or related to this
Agreement or the use of the Document (whether or not Barr Group knew or should have known of the possibility of any such
damages) or any third party claim that the Document as delivered to you hereunder, infringes any copyright or trademark
right or misappropriates any trade secret of any third party.

4. GOVERNING LAW; JURISDICTION; VENUE. This Agreement shall be construed in accordance with the laws of the State of
Maryland without giving effect to its conflicts of laws rules. Any dispute arising out of, connected with or relating to this
Agreement, shall be brought in either the state court of general jurisdiction in Montgomery County or the U.S. District Court
for the District of Maryland, which the parties agree shall be the venue and exclusive forum in which to adjudicate any case or
controversy arising from or relating to this Agreement. Each party irrevocably submits to the jurisdiction of such courts and
waives any objections to either the jurisdiction of or venue in such courts. In the event Barr Group prevails in any dispute
arising out of, connected with, or relating to this Agreement, you shall pay Barr Group any and all costs associated with such
dispute, including, without limitation, reasonable attorneys’ fees.

5. SEVERABILITY; CONSIDERATION. Every part of this Agreement shall be considered severable. If for any reason any party
of this Agreement is held to be invalid, that determination shall not impair or otherwise affect the enforceability of the other
parts of this Agreement. By obtaining the Document, you acknowledge and agree that the consideration underlying this
Agreement is the mutual promises and covenants herein and your use of, and access to, the Document subject to the terms and
conditions of this Agreement.

Embedded C Coding Standard

 vi

 Embedded C Coding Standard

 vii

Contents

Introduction .. 1

Purpose of the Standard .. 1

Guiding Principles ... 2

MISRA C ... 4

C++ vs. C ... 5

Enforcement Guidelines .. 5

Deviation Procedure .. 6

Customization .. 7

Acknowledgements ... 7

1 General Rules .. 8

1.1 Which C? ... 8

1.2 Line Widths ... 9

1.3 Braces ... 10

1.4 Parentheses.. 11

1.5 Common Abbreviations ... 12

1.6 Casts ... 13

1.7 Keywords to Avoid .. 14

1.8 Keywords to Frequent .. 15

2 Comment Rules .. 17

2.1 Acceptable Formats .. 17

2.2 Locations and Content ... 18

Embedded C Coding Standard

 viii

3 White Space Rules .. 21

3.1 Spaces .. 21

3.2 Alignment.. 23

3.3 Blank Lines .. 24

3.4 Indentation .. 25

3.5 Tabs .. 27

3.6 Non-Printing Characters .. 28

4 Module Rules .. 29

4.1 Naming Conventions ... 29

4.2 Header Files .. 30

4.3 Source Files.. 31

4.4 File Templates ... 32

5 Data Type Rules ... 33

5.1 Naming Conventions ... 33

5.2 Fixed-Width Integers .. 34

5.3 Signed and Unsigned Integers .. 35

5.4 Floating Point .. 36

5.5 Structures and Unions .. 37

5.6 Booleans... 39

6 Procedure Rules .. 40

6.1 Naming Conventions ... 40

6.2 Functions ... 42

6.3 Function-Like Macros... 44

6.4 Threads of Execution .. 45

6.5 Interrupt Service Routines ... 46

 Embedded C Coding Standard

 ix

7 Variable Rules ... 48

7.1 Naming Conventions ... 48

7.2 Initialization .. 50

8 Statement Rules .. 51

8.1 Variable Declarations ... 51

8.2 Conditional Statements .. 52

8.3 Switch Statements ... 53

8.4 Loops ... 54

8.5 Jumps ... 55

8.6 Equivalence Tests ... 56

Appendix A: Table of Abbreviations ... 57

Appendix B: Header File Template .. 59

Appendix C: Source File Template ... 60

Appendix D: Example Program ... 61

Bibliography ... 69

Index.. 70

Embedded C Coding Standard

 x

 Embedded C Coding Standard

 1

Introduction

Purpose of the Standard

Barr Group’s Embedded C Coding Standard was designed specifically to reduce the
number of programming defects in embedded software. By following this coding
standard, firmware developers not only reduce hazards to users and time spent in
the debugging stage of their projects but also improve the maintainability and
portability of their software. Together these outcomes can greatly lower the cost of
developing high-reliability embedded software.

This “BARR-C” coding standard is different from other coding standards. Rather
than being based on the stylistic preferences of the authors, the rules in this standard
were selected for their ability to minimize defects. When it was the case that one
rule had the ability to prevent more defects from being made by programmers than
an alternative rule for a similar aspect of coding, that more impactful rule was
chosen. For example, the stylistic rules for when and where to place curly braces
were selected on the basis of their ability to reduce bugs across a whole program.

Individual rules that are objectively expected to reduce the number of defects in
this way are tagged with the following “Keeps Bugs Out” icon:

Clearly, no set of coding rules will be able to eliminate 100% of the defects from
embedded systems. Interactions between electronics and software as well as
between inter-connected systems are complex by their nature. Even if there existed
a team of programmers able to code perfectly and they followed all possible defect-
minimizing rules, defects in the product could still occur as a result of: mistakes in
the project requirements; misunderstandings of the requirements by implementers;
oversights in the architecture of the system and/or software; insufficient handling of
hardware failures or other exceptional run-time circumstances; etc.

Embedded C Coding Standard

 2

Other important reasons to adopt this coding standard include increased
readability and portability of source code. The result of which is reduced cost of
code maintenance and reuse. Adopting the complete set of rules in this coding
standard (i.e., not just the defect reducers) benefits a team of developers and its
larger organization by helping to reduce the time required by individuals to
understand the work of their peers and predecessors.

We recommend that the BARR-C coding standard be applied to your project as
part of a broader effort to improve your organization’s embedded software
development and quality assurance processes. Relative to the risks to human users
of your projects, of course, an appropriate software development process may be
lightweight but must emphasize the importance of system and software architecture
to prevent and recover from run-time hazards as well as professional training for all

programmers in this and other aspects of their work.1 At a minimum, your process

should include not only a coding standard but also at least the use of version control
and defect tracking tools, formal architecture/design reviews and peer code reviews,
as well as automated source code scans via one or more static analysis tools.

Guiding Principles

To focus our attention and eliminate internal conflict over items that are too-often
viewed by programmers as personal stylistic preferences, this coding standard was
developed in accordance with the following guiding principles:

1. Individual programmers do not own the software they write. All software
development is work for hire for an employer or a client and, thus, the end
product should be constructed in a workmanlike manner.

2. It is cheaper and easier to prevent a bug from creeping into code than it is to
find and kill it after it has entered. A key strategy in this fight is to write code
in which the compiler, linker, or a static analysis tool can detect such defects
automatically—i.e., before the code is allowed to execute.

1 Whenever humans could be injured or killed by a product malfunction or insecurity,
appropriate safety guidelines should be followed. This book is NOT a safety standard.

 Embedded C Coding Standard

 3

3. For better or worse (well, mostly worse), the ISO C Programming Language

“Standard” permits a considerable amount of variation between compilers.2

The ISO C Standard’s “implementation-defined,” “unspecified,” and
“undefined” behaviors, along with “locale-specific options”, mean that even
programs compiled from identical source code but via different “ISO C”-
compliant compilers may behave very differently at run-time. Such gray
areas in the C language standard greatly reduce the portability of source code
that is not carefully crafted.

4. The reliability, readability, efficiency, and sometimes portability of source
code is more important than programmer convenience..

5. There are many sources of defects in software programs. The original team
of programmers will create some defects. Programmers who later maintain,
extend, port, and/or reuse the resulting source code may create additional
defects—including as a result of misunderstandings of the original code.

• The number and severity of defects introduced by the original
programmer(s) can be reduced through disciplined conformance with
certain coding practices, such as the placement of constants to the left
side of an equivalence (==) test.

• The number and severity of defects introduced by maintenance
programmers can also be reduced by the original programmer. For
example, appropriate use of portable fixed-width integer types (e.g.,
int32_t) ensures that no future port of the code will encounter an
unexpected overflow.

• The number and severity of defects introduced by maintenance
programmers can also be reduced through the disciplined use of
consistent commenting and stylistic practices, so that everyone in an
organization can more easily understand the meaning and proper use
of variables, functions, and modules.

2 See, e.g., [C90] and [C99].

Embedded C Coding Standard

 4

6. To be effective, coding standards must be enforceable. Thus, when it is the
case that two or more alternative rules would equally prevent defects, the
more easily enforced rule is the better choice.

In the absence of a needed rule herein or a conflict within the coding standard
your team commits to follow, the spirit of the above principles should be applied to
guide the decision.

MISRA C

The MISRA C:2012 – Guidelines for the Use of the C Language in Critical Systems (see
[MISRA-C]) defines a subset of the C programming language that is safer—albeit
also more restrictive—than the rules in this BARR-C coding standard.

If you are designing products that could kill or injure one or more people, the
MISRA C guidelines are important to study and should be made part of your
project’s coding standard. The MISRA C guidelines are now in their third edition
and have been practiced for over two decades. Chances are that the authors of the
MISRA C are more knowledgeable than you of the risks of using C in safety-critical
systems.

In the present edition, every effort has been made to ensure that BARR-C’s rules
can be combined with some or all of MISRA-C:2012’s guidelines. Specifically:

• To the extent that a collection of the rules herein define a subset of the C
programming language (e.g., limitations on the use of the register and
goto keywords), they are never more restrictive than the MISRA C
guidelines. Put another way, MISRA-C:2012 defines a subset of the C
language that is itself a subset of the BARR-C rules.

• To the extent that a collection of the rules herein place stylistic limitations
on programmers (e.g., restricting the format of function or variable
names), these never contradict the MISRA C guidelines. In other words,
BARR-C comprises a C style guide that is complementary to MISRA C,
which does not make any recommendations related purely to style.

A 2018 survey found that together these standards were the primary basis of the
project-specific coding standards followed by more than 40% of firmware designers.

 Embedded C Coding Standard

 5

C++ vs. C

Though the title of this book only explicitly includes the C language, embedded
programmers working in C++ (or a mix of the two languages) are also able to reduce
the number of defects in their programs by following the rules herein. This is
because the syntax of C++ follows closely from C and many lines of C++ source code
rely only on C syntax.

It is important to note, however, that C++ is a substantially larger and more
complex language than C and contains a number of features that have no equivalent
in C. If you are following the BARR-C rules in C++ you should strongly consider
adopting other coding standard rules, perhaps choosing from those suggested by
[MISRA-C++], [Sutter], and/or [Holub].

As embedded software developers, our focus remains primarily on C, which is
the primary programming language for about 70% of professional firmware
designers. A longitudinal review of industry surveys spanning 2005 to 2018 shows
that C was not only reliably the most widely-used language but that it actually
increased its market share from 50% to about 70% in those years. Within the
embedded systems community, it appears the peak year for C++ was 2006.

Enforcement Guidelines

Conformance with all of the rules in this coding standard is deemed mandatory.
Non-conforming code should preferably be detected: primarily via automated scans
(i.e., static analysis); secondarily via peer code reviews; or, in the absence of those
options, informal discovery. Upon detection, any non-conforming code should be
made to meet all of the rules herein.

There are commercial static analysis tools that can be used to automatically check
for non-compliance with many of the rules of this and other coding standards. Tools
pre-configured to detect violations of the enforceable subset of rules in this coding
standard are requested to refer to it as the “BARR-C:2018” standard.

When changing to a new coding standard, decisions must be made regarding
legacy code. Few development teams have time to revisit the style of pre-existing
source code libraries.

Embedded C Coding Standard

 6

With respect to legacy code we suggest that:

• It is generally best to leave working legacy code alone. Unless, of course,
life and limb are on the line.

• Any decision to bring legacy source code into conformance with the rules
herein should be made for one module (i.e., .h header file and .c source
file) or library at a time. The best time to make such stylistic changes is
often when the module or library also requires functional changes.

Note that changes relating to the use and/or placement of white space (e.g.,
replacement of tabs with spaces) should be made in a version control check-in that is
distinct from functional changes to the same code. This is to ensure the maximal
utility of the source code differencing features of version control tools with respect to
functional changes made before and after the white space changes.

Deviation Procedure

All source code that is submitted for a product release shall conform to all of the
rules herein, except if its specific deviations have been documented and approved.

At the project level, rules that indicate a specific quantity of something (e.g., the
number of characters per indent or maximum lines in a function) can be changed to
enforce a different quantity that works better in the actual development tools. The
specific quantity is not typically the key property of these types of rules.

At the level of source code modules, it is only acceptable to deviate from this
coding standard with the approval of the project manager. The approver’s name
and the reasoning supporting the deviation shall be documented as closely as
possible to the actual deviation(s). For example, a single deviation in a single
function should be documented in a comment above or within the implementation
code—whichever will be clearest to the next reader. By contrast, a module-wide
deviation may be better documented in the comments at the top of the source file.

 Embedded C Coding Standard

 7

Customization

This document as well as the selection and arrangement of the rules it comprises
is Copyright © 2018 by Barr Group. It is permissible for individual project teams,
whole companies, and others to adopt all or a subset of the rules herein as their
coding standard. Indeed, we are happy that many readers of earlier editions have
done this and hope that many more will. Adoption of the rules as presented herein
may be done simply by identifying “Barr Group’s Embedded C Coding Standard”
(alternatively, “BARR-C:2018”) as the source of your rules.

To help development teams customize this coding standard to meet their project-
or company-specific needs, an editable version of this document is available for
license and download at barrgroup.com/coding-standard.

Your full legal obligations in relation to the use of this copyrighted work are
described at the front of this book.

Acknowledgements

Though my name is listed as author, the development and maintenance of this
Embedded C Coding Standard book has been a collaborative effort that began more
than a decade ago and involved most of the people currently at Barr Group as well
as many other members of the embedded software community. I am specifically
grateful to Salomon Singer and Joe Perret for helping me make the 2008 edition of
the book a reality; to Gary Stringham for working closely with me on the more
technical updates in this 2018 edition; and to all of the multitude who commented on
specific rules or proposed changes, reviewed drafts of any edition, or provided other
types of feedback across the years.

Embedded C Coding Standard

 8

1 General Rules

1.1 Which C?

Rules:

a. All programs shall be written to comply with the C99 version of the ISO C

Programming Language Standard.3

b. Whenever a C++ compiler is used, appropriate compiler options shall be set
to restrict the language to the selected version of ISO C.

c. The use of proprietary compiler language keyword extensions, #pragma, and
inline assembly shall be kept to the minimum necessary to get the job done
and be localized to a small number of device driver modules that interface
directly to hardware.

d. Preprocessor directive #define shall not be used to alter or rename any
keyword or other aspect of the programming language.

Example:

#define begin { // Don’t do something like this...
#define end } // ... nor this.
...

 for (int row = 0; row < MAX_ROWS; row++)

 begin

 ...

 end // Let C be C, not some language you once loved.

Reasoning: To clearly define the rules in the rest of this standard, it is important that
we first agree on the baseline programming language specification.

Enforcement: These rules shall be enforced via compiler setup and code reviews.

3 C99-compatible compilers offer many valuable improvements over older compilers, such as
C++-style comments, Boolean and fixed-width integer types, inline functions, and local
variable declarations anywhere within a function body.

 Embedded C Coding Standard

 9

1.2 Line Widths

Rules:

a. The width of all lines in a program shall be limited to a maximum of 80
characters.

Reasoning: From time-to-time, peer reviews and other code examinations are
conducted on printed pages. To be useful, such print-outs must be free of
distracting line wraps as well as missing (i.e., past the right margin) characters. Line
width rules also ease on-screen side-by-side code differencing.

Enforcement: Violations of this rule shall be detected by an automated scan during
each build.

Embedded C Coding Standard

 10

1.3 Braces

Rules:

a. Braces shall always surround the blocks of code (a.k.a., compound
statements), following if, else, switch, while, do, and for
statements; single statements and empty statements following these
keywords shall also always be surrounded by braces.

b. Each left brace ({) shall appear by itself on the line below the start of the block
it opens. The corresponding right brace (}) shall appear by itself in the same
position the appropriate number of lines later in the file.

Example:

{

 if (depth_in_ft > 10) dive_stage = DIVE_DEEP; // This is legal...

 else if (depth_in_ft > 0)

 dive_stage = DIVE_SHALLOW; // ... as is this.

 else

 { // But using braces is always safer.

 dive_stage = DIVE_SURFACE;

 }

 ...

}

Reasoning: There is considerable risk associated with the presence of empty
statements and single statements that are not surrounded by braces. Code
constructs like this are often associated with bugs when nearby code is changed or
commented out. This risk is entirely eliminated by the consistent use of braces. The
placement of the left brace on the following line allows for easy visual checking for
the corresponding right brace.

Enforcement: The presence of a left brace after each if, else, switch, while, do,
and for shall be enforced by an automated tool at build time. The same tool or
another (such as a code beautifier) shall be used to enforce the alignment of braces.

 Embedded C Coding Standard

 11

1.4 Parentheses

Rules:

a. Do not rely on C’s operator precedence rules, as they may not be
obvious to those who maintain the code. To aid clarity, use
parentheses (and/or break long statements into multiple lines of
code) to ensure proper execution order within a sequence of operations.

b. Unless it is a single identifier or constant, each operand of the logical AND
(&&) and logical OR (||) operators shall be surrounded by parentheses.

Example:

if ((depth_in_cm > 0) && (depth_in_cm < MAX_DEPTH))

{

 depth_in_ft = convert_depth_to_ft(depth_in_cm);

}

Reasoning: The syntax of the C programming language has many operators. The
precedence rules that dictate which operators are evaluated before which others are
complicated—with over a dozen priority levels—and not always obvious to all
programmers. When in doubt it’s better to be explicit about what you hope the
compiler will do with your calculations.

Enforcement: These rules shall be enforced during code reviews.

Embedded C Coding Standard

 12

1.5 Common Abbreviations

Rules:

a. Abbreviations and acronyms should generally be avoided unless their
meanings are widely and consistently understood in the engineering
community.

b. A table of project-specific abbreviations and acronyms shall be maintained in
a version-controlled document.

Example: Appendix A contains a sample table of abbreviations and their meanings.

Reasoning: Programmers too readily use cryptic abbreviations and acronyms in
their code (and in their resumes!). Just because you know what ZYZGXL means
today doesn’t mean the programmer(s) who have to read/maintain/port your code
will later be able to make sense of your cryptic names that reference it.

Enforcement: These rules shall be enforced during code reviews.

 Embedded C Coding Standard

 13

1.6 Casts

Rules:

a. Each cast shall feature an associated comment describing how the code
ensures proper behavior across the range of possible values on the right side.

Example:

int

abs (int arg)

{

 return ((arg < 0) ? -arg : arg);

}

...

 uint16_t sample = adc_read(ADC_CHANNEL_1);

 result = abs((int) sample); // WARNING: 32-bit int assumed.

Reasoning: Casting is dangerous. In the example above, unsigned 16-bit “sample”
can hold larger positive values than a signed 16-bit integer. In that case, the
absolute value will be incorrect as well. Thus there is a possible overflow if int is
only 16-bits, which the ISO C standard permits.

Enforcement: This rule shall be enforced during code reviews.

Embedded C Coding Standard

 14

1.7 Keywords to Avoid

Rules:

a. The auto keyword shall not be used.

b. The register keyword shall not be used.

c. It is a preferred practice to avoid all use of the goto keyword. If goto is used
it shall only jump to a label declared later in the same or an enclosing block.

d. It is a preferred practice to avoid all use of the continue keyword.

Reasoning: The auto keyword is an unnecessary historical feature of the language.
The register keyword presumes the programmer is smarter than the compiler.
There is no compelling reason to use either of these keywords in modern
programming practice.

The keywords goto and continue still serve purposes in the language, but their
use too often results in spaghetti code. In particular, the use of goto to make jumps
orthogonal to the ordinary control flows of the structured programming paradigm is
problematic. The occasional use of goto to handle an exceptional circumstance is
acceptable if it simplifies and clarifies the code.

Enforcement: The presence of forbidden keywords in new or modified source code
shall be detected and reported via an automated tool at each build. To the extent
that the use of goto or continue is permitted, code reviewers should investigate
alternative code structures to improve code maintainability and readability.

 Embedded C Coding Standard

 15

1.8 Keywords to Frequent

Rules:

a. The static keyword shall be used to declare all functions and
variables that do not need to be visible outside of the module in
which they are declared.

b. The const keyword shall be used whenever appropriate. Examples include:

i. To declare variables that should not be changed after initialization,

ii. To define call-by-reference function parameters that should
not be modified (e.g., char const * param),

iii. To define fields in a struct or union that should not be
modified (e.g., in a struct overlay for memory-mapped I/O
peripheral registers), and

iv. As a strongly typed alternative to #define for numerical constants.

c. The volatile keyword shall be used whenever appropriate. Examples
include:

i. To declare a global variable accessible (by current use or
scope) by any interrupt service routine,

ii. To declare a global variable accessible (by current use or
scope) by two or more threads,

iii. To declare a pointer to a memory-mapped I/O peripheral
register set (e.g., timer_t volatile * const p_timer),
and

iv. To declare a delay loop counter.

Embedded C Coding Standard

 16

Example:
typedef struct

{

 uint16_t count;

 uint16_t max_count;

 uint16_t const _unused; // read-only register

 uint16_t control;

} timer_reg_t;

timer_reg_t volatile * const p_timer = (timer_reg_t *) HW_TIMER_ADDR;

Reasoning: C’s static keyword has several meanings. At the module-level, global
variables and functions declared static are protected from external use. Heavy-
handed use of static in this way thus decreases coupling between modules.

The const and volatile keywords are even more important. The upside of
using const as much as possible is compiler-enforced protection from unintended
writes to data that should be read-only. Proper use of volatile eliminates a whole
class of difficult-to-detect bugs by preventing compiler optimizations that would

eliminate requested reads or writes to variables or registers.4

Enforcement: These rules shall be enforced during code reviews.

4 Anecdotal evidence suggests that programmers unfamiliar with the volatile keyword
believe their compiler’s optimization feature is more broken than helpful and disable
optimization. We believe that the vast majority of embedded systems contain bugs waiting
to happen due to missing volatile keywords. Such bugs typically manifest themselves as
“glitches” or only after changes are made to a “proven” code base.

 Embedded C Coding Standard

 17

2 Comment Rules

2.1 Acceptable Formats

Rules:

a. Single-line comments in the C++ style (i.e., preceded by //) are a useful and
acceptable alternative to traditional C style comments (i.e., /* … */).

b. Comments shall never contain the preprocessor tokens /*, //, or \.

c. Code shall never be commented out, even temporarily.

i. To temporarily disable a block of code, use the preprocessor’s
conditional compilation feature (e.g., #if 0 … #endif).

ii. Any line or block of code that exists specifically to increase the level of
debug output information shall be surrounded by #ifndef NDEBUG …
#endif.

Example:

/* The following code was meant to be part of the build...

...

safety_checker();

...

/* ... but an end of comment character sequence was omitted. */

Reasoning: Whether intentional or not, nested comments run the risk of confusing
source code reviewers about the chunks of the code that will be compiled and run.
Our choice of negative-logic NDEBUG is deliberate, as that constant is also associated
with disabling the assert() macro. In both cases, the programmer acts to disable
the verbose code.

Enforcement: The use of only permitted comment formats can be partially enforced
by the compiler or static analysis. However, only human code reviewers can tell the
difference between commented-out code and comments containing descriptive code
snippets.

Embedded C Coding Standard

 18

2.2 Locations and Content

Rules:

a. All comments shall be written in clear and complete sentences, with proper
spelling and grammar and appropriate punctuation.

b. The most useful comments generally precede a block of code that performs
one step of a larger algorithm. A blank line shall follow each such code block.
The comments in front of the block should be at the same indentation level.

c. Avoid explaining the obvious. Assume the reader knows the C programming
language. For example, end-of-line comments should only be used where the
meaning of that one line of code may be unclear from the variable and
function names and operations alone but where a short comment makes it
clear. Specifically, avoid writing unhelpful and redundant comments, e.g.,
“numero <<= 2; // Shift numero left 2 bits.”.

d. The number and length of individual comment blocks shall be proportional to
the complexity of the code they describe.

e. Whenever an algorithm or technical detail is defined in an external
reference—e.g., a design specification, patent, or textbook—a comment shall
include a sufficient reference to the original source to allow a reader of the
code to locate the document.

f. Whenever a flow chart or other diagram is needed to sufficiently document
the code, the drawing shall be maintained with the source code under version
control and the comments should reference the diagram by file name or title.

g. All assumptions shall be spelled out in comments.5

h. Each module and function shall be commented in a manner suitable for
automatic documentation generation, e.g., via Doxygen.

5 Even better than comments is a set of design-by-contract tests or assertions. See, e.g.,
barrgroup.com/embedded-systems/how-to/design-by-contract-for-embedded-software.

 Embedded C Coding Standard

 19

i. Use the following capitalized comment markers to highlight important issues:

i. “WARNING:” alerts a maintainer there is risk in changing this
code. For example, that a delay loop counter’s terminal value
was determined empirically and may need to change when
the code is ported or the optimization level tweaked.

ii. “NOTE:” provides descriptive comments about the “why” of a chunk of
code—as distinguished from the “how” usually placed in comments.
For example, that a chunk of driver code deviates from the datasheet
because there was an errata in the chip. Or that an assumption is being
made by the original programmer.

iii. “TODO:” indicates an area of the code is still under construction and
explains what remains to be done. When appropriate, an all-caps
programmer name or set of initials may be included before the word
TODO (e.g., “MJB TODO:”).

Example:

// Step 1: Batten down the hatches.

for (int hatch = 0; hatch < NUM_HATCHES; hatch++)

{

 if (hatch_is_open(hatches[hatch]))

 {

 hatch_close(hatches[hatch]);

 }

}

// Step 2: Raise the mizzenmast.

// TODO: Define mizzenmast driver API.

Embedded C Coding Standard

 20

Reasoning: Following these rules results in good comments. And good comments
correlate with good code. It is a best practice to write the comments before writing
the code that implements the behaviors those comments outline.

Unfortunately, it is easy for source code and documentation to drift over time.
The best way to prevent this is to keep the documentation as close to the code as
possible. Likewise, anytime a question is asked about a section of the code that was
previously thought to be clear, you should add a comment addressing that issue
nearby.

Doxygen is a useful tool to generate documentation describing the modules,
functions, and parameters of an API for its users. However, comments are also still
necessary inside the function bodies to reduce the cost of code maintenance.

Enforcement: The quality of comments shall be evaluated during code reviews.
Code reviewers should verify that comments accurately describe the code and are
also clear, concise, and valuable. Automatically generated documentation should be
rebuilt each time the software is built.

 Embedded C Coding Standard

 21

3 White Space Rules

3.1 Spaces

Rules:

a. Each of the keywords if, while, for, switch, and return shall be followed
by one space when there is additional program text on the same line.

b. Each of the assignment operators =, +=, -=, *=, /=, %=, &=, |=, ^=, ~=, and !=
shall always be preceded and followed by one space.

c. Each of the binary operators +, -, *, /, %, <, <=, >, >=, ==,!=, <<, >>, &, |, ^, &&,
and || shall always be preceded and followed by one space.

d. Each of the unary operators +, -, ++, --, ! , and ~, shall be written without a
space on the operand side.

e. The pointer operators * and & shall be written with white space on each side
within declarations but otherwise without a space on the operand side.

f. The ? and : characters that comprise the ternary operator shall each always
be preceded and followed by one space.

g. The structure pointer and structure member operators (-> and ., respectively)
shall always be without surrounding spaces.

h. The left and right brackets of the array subscript operator ([and]) shall be
without surrounding spaces, except as required by another white space rule.

i. Expressions within parentheses shall always have no spaces adjacent to the
left and right parenthesis characters.

j. The left and right parentheses of the function call operator shall always be
without surrounding spaces, except that the function declaration shall feature
one space between the function name and the left parenthesis to allow that
one particular mention of the function name to be easily located.

k. Except when at the end of a line, each comma separating function parameters
shall always be followed by one space.

Embedded C Coding Standard

 22

l. Each semicolon separating the elements of a for statement shall always be
followed by one space.

m. Each semicolon shall follow the statement it terminates without a preceding
space.

Example: See Appendix D.

Reasoning: In source code, the placement of white space is as important as the
placement of text. Good use of white space reduces eyestrain and increases the
ability of programmers and reviewers of the code to spot potential bugs.

Enforcement: These rules shall be followed by programmers as they work as well as
reinforced via a code beautifier, e.g., GNU Indent.

 Embedded C Coding Standard

 23

3.2 Alignment

Rules:

a. The names of variables within a series of declarations shall have their first
characters aligned.

b. The names of struct and union members shall have their first characters
aligned.

c. The assignment operators within a block of adjacent assignment statements
shall be aligned.

d. The # in a preprocessor directive shall always be located at the start of a line,
though the directives themselves may be indented within a #if or #ifdef
sequence.

Example:

#ifdef USE_UNICODE_STRINGS

define BUFFER_BYTES 128

#else

define BUFFER_BYTES 64

#endif

…

typedef struct

{

 uint8_t buffer[BUFFER_BYTES];

 uint8_t checksum;

} string_t;

Reasoning: Visual alignment emphasizes similarity. A series of consecutive lines
each containing a variable declaration is easily seen and understood as a block of
related lines of code. Blank lines and differing alignments should be used as
appropriate to visually separate and distinguish unrelated blocks of code that
happen to be located in proximity.

Enforcement: These rules shall be enforced during code reviews.

Embedded C Coding Standard

 24

3.3 Blank Lines

Rules:

a. No line of code shall contain more than one statement.

b. There shall be a blank line before and after each natural block of code.
Examples of natural blocks of code are loops, if…else and switch
statements, and consecutive declarations.

c. Each source file shall terminate with a comment marking the end of file
followed by a blank line.

Example: See Appendix D.

Reasoning: Appropriate placement of white space provides visual separation and
thus makes code easier to read and understand, just as the white space areas
between paragraphs of this coding standard aid readability. Clearly marking the
end of a file is important for human reviewers looking at printouts and the blank
line following may be required by some older compilers.

Enforcement: These rules shall be enforced during code reviews.

 Embedded C Coding Standard

 25

3.4 Indentation

Rules:

a. Each indentation level should align at a multiple of 4 characters from the start
of the line.

b. Within a switch statement, the case labels shall be aligned; the contents of
each case block shall be indented once from there.

c. Whenever a line of code is too long to fit within the maximum line width,
indent the second and any subsequent lines in the most readable manner
possible.

Example:

sys_error_handler(int err)

{

 switch (err)

 {

 case ERR_THE_FIRST:

 ...

 break;

 default:

 ...

 break;

 }

 // Purposefully misaligned indentation; see why?

 if ((first_very_long_comparison_here

 && second_very_long_comparison_here)

 || third_very_long_comparison_here)

 {

 ...

 }

}

Embedded C Coding Standard

 26

Reasoning: Fewer indentation spaces increase the risk of visual confusion while
more spaces increases the likelihood of line wraps.

Enforcement: A tool, such as a code beautifier, shall be available to programmers to
convert indentations of other sizes in an automated manner. This tool shall be used
on all new or modified files prior to each build.

 Embedded C Coding Standard

 27

3.5 Tabs

Rules:

a. The tab character (ASCII 0x09) shall never appear within any source code file.

Example:

// When tabs are needed inside a string, use the ‘\t’ character.

#define COPYRIGHT “Copyright (c) 2018 Barr Group.\tAll rights reserved.”

// When indents are needed in the source code, align via spaces instead.

void

main (void)

{

 // If not, you can encounter

 // all sorts

 // of weird and

 // uneven

 // alignment of code and comments... across tools.

}

Reasoning: The width of the tab character varies by text editor and programmer
preference, making consistent visual layout a continual source of headaches during
code reviews and maintenance.

Enforcement: Each programmer should configure his or her code editing tools to
insert spaces when the keyboard’s TAB key is pressed. The presence of a tab
character in new or modified code shall be flagged via an automated scan at each
build or code check-in.

Embedded C Coding Standard

 28

3.6 Non-Printing Characters

Rules:

a. Whenever possible, all source code lines shall end only with the single
character ‘LF’ (ASCII 0x0A), not with the pair ‘CR’-‘LF’ (0x0D 0x0A).

b. The only other non-printable character permitted in a source code file is the
form feed character ‘FF’ (ASCII 0x0C).

Example: It’s not possible to demonstrate non-printing characters in print.

Reasoning: The multi-character sequence ‘CR’-‘LF’ is more likely to cause problems
in a multi-platform development environment than the single character ‘LF’. One
such problem is associated with multi-line preprocessor macros on Unix platforms.

Enforcement: Whenever possible, programmer’s editors shall be configured to use
LF. In addition, an automated tool shall scan all new or modified source code files
during each build, replacing each CR-LF sequence with an LF.

 Embedded C Coding Standard

 29

4 Module Rules

4.1 Naming Conventions

Rules:

a. All module names shall consist entirely of lowercase letters,
numbers, and underscores. No spaces shall appear within the
module’s header and source file names.

b. All module names shall be unique in their first 8 characters and end with
suffices .h and .c for the header and source file names, respectively.

c. No module’s header file name shall share the name of a header file
from the C Standard Library or C++ Standard Library. For example,
modules shall not be named “stdio” or “math”.

d. Any module containing a main() function shall have the word “main” as part
of its source file name.

Example: See Appendix D.

Reasoning: Multi-platform development environments (e.g., Unix and Windows)
are the norm rather than the exception. Mixed case names can cause problems
across operating systems and are also error prone due to the possibility of similarly-
named but differently-capitalized files becoming confused by human programmers.

The inclusion of “main” in a file name is an aid to code maintainers that has
proven useful in projects with multiple software configurations.

Enforcement: An automated tool shall confirm that all file names that are part of a
build are consistent with these rules.

Embedded C Coding Standard

 30

4.2 Header Files

Rules:

a. There shall always be precisely one header file for each source file and they
shall always have the same root name.

b. Each header file shall contain a preprocessor guard against multiple inclusion,

as shown in the example below.6

c. The header file shall identify only the procedures, constants, and data types
(via prototypes or macros, #define, and typedefs, respectively) about which
it is strictly necessary for other modules to be informed.

i. It is a preferred practice that no variable ever be declared (via extern)
in a header file.

ii. No storage for any variable shall be allocated in a header file.

d. No public header file shall contain a #include of any private header file.

Example:

#ifndef ADC_H

#define ADC_H

...

#endif /* ADC_H */

Reasoning: The C language standard gives all variables and functions global scope
by default. The downside of this is unnecessary (and dangerous) coupling between
modules. To reduce inter-module coupling, keep as many procedures, constants,
data types, and variables as possible privately hidden within a module’s source file.

See also What Belongs in a C .h Header File?:

embeddedgurus.com/barr-code/2010/11/what-belongs-in-a-c-h-header-file/

Enforcement: These rules shall be enforced during code reviews.

6 The preprocessor directive “#pragma once” has the same purpose but is non-portable.

 Embedded C Coding Standard

 31

4.3 Source Files

Rules:

a. Each source file shall include only the behaviors appropriate to control one
“entity”. Examples of entities include encapsulated data types, active objects,
peripheral drivers (e.g., for a UART), and communication protocols or layers
(e.g., ARP).

b. Each source file shall be comprised of some or all of the following sections, in
the order listed: comment block; include statements; data type, constant, and
macro definitions; static data declarations; private function prototypes; public
function bodies; then private function bodies.

c. Each source file shall always #include the header file of the same
name (e.g., file adc.c should #include “adc.h”), to allow the
compiler to confirm that each public function and its prototype match.

d. Absolute paths shall not be used in include file names.

e. Each source file shall be free of unused include files.

f. No source file shall #include another source file.

Example: See Appendix D.

Reasoning: The purpose and internal layout of a source file module should be clear
to all who maintain it. For example, the public functions are generally of most
interest and thus appear ahead of the private functions they call. Of critical
importance is that every function declaration be matched by the compiler against its
prototype.

Enforcement: Most static analysis tools can be configured to check for include files
that are not actually used. The other rules shall be enforced during code reviews.

Embedded C Coding Standard

 32

4.4 File Templates

Rules:

a. A set of templates for header files and source files shall be maintained at the
project level.

Example: See Appendix B and Appendix C for sample file templates.

Reasoning: Starting each new file from a template ensures consistency in file header
comment blocks and ensures inclusion of appropriate copyright notices.

Enforcement: The consistency of file formats shall be enforced during code reviews.

 Embedded C Coding Standard

 33

5 Data Type Rules

5.1 Naming Conventions

Rules:

a. The names of all new data types, including structures, unions, and
enumerations, shall consist only of lowercase characters and internal
underscores and end with ‘_t’.

b. All new structures, unions, and enumerations shall be named via a typedef.

c. The name of all public data types shall be prefixed with their module name
and an underscore.

Example:

typedef struct

{

 uint16_t count;

 uint16_t max_count;

 uint16_t _unused;

 uint16_t control;

} timer_reg_t;

Reasoning: Data type names and variable names are often appropriately similar.
For example, a set of timer control registers in a peripheral calls out to be named
‘timer_reg’. To distinguish the structure definition that defines the register layout,
it is valuable to create a new type with a distinct name, such as ‘timer_reg_t’. If
necessary this same type could then be used to create a shadow copy of the timer
registers, say called ‘timer_reg_shadow’.

Enforcement: An automated tool shall scan new or modified source code prior to
each build to ensure that the keywords struct, union, and enum are used only
within typedef statements or in anonymous declarations. Code reviews shall be
used to enforce the naming rules for new types.

Embedded C Coding Standard

 34

5.2 Fixed-Width Integers

Rules:

a. Whenever the width, in bits or bytes, of an integer value matters in
the program, one of the fixed width data types shall be used in place
of char, short, int, long, or long long. The signed and unsigned
fixed-width integer types shall be as shown in the table below.

Integer Width Signed Type Unsigned Type

8 bits int8_t uint8_t

16 bits int16_t uint16_t

32 bits int32_t uint32_t

64 bits int64_t uint64_t

b. The keywords short and long shall not be used.

c. Use of the keyword char shall be restricted to the declaration of and
operations concerning strings.

Example: See Appendix D.

Reasoning: The C90 standard purposefully allowed for implementation-defined
widths for char, short, int, long, and long long types, which has resulted in code
portability problems. The C99 standard did not resolve this but did introduce the
type names shown in the table, which are defined in the stdint.h header file.

See also Portable Fixed-Width Integers in C:

barrgroup.com/embedded-systems/how-to/c-fixed-width-integers-c99

In the absence of a C99-compatible compiler, it is acceptable to define the set of
fixed-width types in the table above as typedefs built from underlying types. If this
is necessary, be sure to use compile-time checking (e.g., static assertions).

Enforcement: At every build an automated tool shall flag any use of keywords
short or long. Compliance with the other rules shall be checked during code
reviews.

 Embedded C Coding Standard

 35

5.3 Signed and Unsigned Integers

Rules:

a. Bit-fields shall not be defined within signed integer types.

b. None of the bitwise operators (i.e., &, |, ~, ^, <<, and >>) shall be
used to manipulate signed integer data.

c. Signed integers shall not be combined with unsigned integers in
comparisons or expressions. In support of this, decimal constants
meant to be unsigned should be declared with a ‘u’ at the end.

Example:

uint16_t unsigned_a = 6u;

int16_t signed_b = -9;

if (unsigned_a + signed_b < 4)

{

 // Execution of this block appears reliably logical, as -9 + 6 is -3

 ...

}

// ... but compilers with 16-bit int may legally perform (0xFFFF – 9) + 6.

Reasoning: Several details of the manipulation of binary data within signed integer
containers are implementation-defined behaviors of the ISO C standards.
Additionally, the results of mixing signed and unsigned integers can lead to data-

dependent outcomes like the one in the code above.7 Beware that the use of C99’s

fixed-width integer types does not by itself prevent such defects.

Enforcement: Static analysis tools can be used to detect violations of these rules.

7 [MISRA-C] describes problems that can arise from mixing C’s “essential types” at length in
its Appendix C and Appendix D.

Embedded C Coding Standard

 36

5.4 Floating Point

Rules:

a. Avoid the use of floating point constants and variables whenever possible.
Fixed-point math may be an alternative.

b. When floating point calculations are necessary:

i. Use the C99 type names float32_t, float64_t, and float128_t.

ii. Append an ‘f’ to all single-precision constants (e.g., pi = 3.141592f).

iii. Ensure that the compiler supports double precision, if your math
depends on it.

iv. Never test for equality or inequality of floating point values.

v. Always invoke the isfinite() macro to check that prior calculations
have resulted in neither INFINITY nor NAN.

Example:

#include <limits.h>

#if (DBL_DIG < 10) // Ensure the compiler supports double precision.

error “Double precision is not available!”

#endif

Reasoning: A large number of risks of defects stem from incorrect use of floating

point arithmetic.8 By default, C promotes all floating-point constants to double

precision, which may be inefficient or unsupported on the target platform.
However, many microcontrollers do not have any hardware support for floating
point math. The compiler may not warn of these incompatibilities, instead
performing the requested numerical operations by linking in a large (typically a few
kilobytes of code) and slow (numerous instruction cycles per operation) floating-
point emulation library.

Enforcement: These rules shall be enforced during code reviews.

8 [CERT-C] has an explanation of these issues in its Chapter 5.

 Embedded C Coding Standard

 37

5.5 Structures and Unions

Rules:

a. Appropriate care shall be taken to prevent the compiler from
inserting padding bytes within struct or union types used to
communicate to or from a peripheral or over a bus or network to
another processor.

b. Appropriate care shall be taken to prevent the compiler from
altering the intended order of the bits within bit-fields.

Example:

typedef struct

{

 uint16_t count; // offset 0

 uint16_t max_count; // offset 2

 uint16_t _unused; // offset 4

 uint16_t enable : 2; // offset 6 bits 15-14

 uint16_t b_interrupt : 1; // offset 6 bit 13

 uint16_t _unused1 : 7; // offset 6 bits 12-6

 uint16_t b_complete : 1; // offset 6 bit 5

 uint16_t _unused2 : 4; // offset 6 bits 4-1

 uint16_t b_periodic : 1; // offset 6 bit 0

} timer_reg_t;

// Preprocessor check of timer register layout byte count.

#if ((8 != sizeof(timer_reg_t))

error “timer_reg_t struct size incorrect (expected 8 bytes)”

#endif

Embedded C Coding Standard

 38

Reasoning: Owing to differences across processor families and loose definitions in
the ISO C language standards, there is a tremendous amount of implementation-
defined behavior in the area of structures and unions. Bit-fields, in particular, suffer
from severe portability problems, including the lack of a standard bit ordering and
no official support for the fixed-width integer types they so often call out to be used
with. The methods available to check the layout of such data structures include
static assertions or other compile-time checks as well as the use of preprocessor
directives, e.g., to select one of two competing struct layouts based on the compiler.

Enforcement: These rules shall be enforced during code reviews.

 Embedded C Coding Standard

 39

5.6 Booleans

Rules:

a. Boolean variables shall be declared as type bool.

b. Non-Boolean values shall be converted to Boolean via use of relational
operators (e.g., < or !=), not via casts.

Example:

#include <stdbool.h>

...

 bool b_in_motion = (0 != speed_in_mph);

Reasoning: The C90 standard did not define a data type for Boolean variables and C
programmers have widely treated any non-zero integer value as true. The C99
language standard is backward compatible with this old style, but also introduced a
new data type for Boolean variables along with new constants true and false in the
stdbool.h header file.

Enforcement: These rules shall be enforced during code reviews.

Embedded C Coding Standard

 40

6 Procedure Rules

6.1 Naming Conventions

Rules:

a. No procedure shall have a name that is a keyword of any standard
version of the C or C++ programming language. Restricted names
include interrupt, inline, class, true, false, public, private,
friend, protected, and many others.

b. No procedure shall have a name that overlaps a function in the C
Standard Library. Examples of such names include strlen, atoi,
and memset.

c. No procedure shall have a name that begins with an underscore.

d. No procedure name shall be longer than 31 characters.

e. No function name shall contain any uppercase letters.

f. No macro name shall contain any lowercase letters.

g. Underscores shall be used to separate words in procedure names.

h. Each procedure’s name shall be descriptive of its purpose. Note that
procedures encapsulate the “actions” of a program and thus benefit from the
use of verbs in their names (e.g., adc_read()); this “noun-verb” word
ordering is recommended. Alternatively, procedures may be named
according to the question they answer (e.g., led_is_on()).

i. The names of all public functions shall be prefixed with their module name
and an underscore (e.g., sensor_read()).

Example: See Appendix D.

Reasoning: Good function names make reviewing and maintaining code easier (and
thus cheaper). The data (variables) in programs are nouns. Functions manipulate
data and are thus verbs. The use of module prefixes is in keeping with the
important goal of encapsulation and helps avoid procedure name overlaps.

 Embedded C Coding Standard

 41

Enforcement: Compliance with these naming rules shall be established in the
detailed design phase and be enforced during code reviews.

Embedded C Coding Standard

 42

6.2 Functions

Rules:

a. All reasonable effort shall be taken to keep the length of each function limited
to one printed page, or a maximum of 100 lines.

b. Whenever possible, all functions shall be made to start at the top of a printed

page, except when several small functions can fit onto a single page.9

c. It is a preferred practice that all functions shall have just one exit point and it
shall be via a return at the bottom of the function.

d. A prototype shall be declared for each public function in the module
header file.

e. All private functions shall be declared static.

f. Each parameter shall be explicitly declared and meaningfully named.

9 One way this can be accomplished is to insert a form feed character ‘FF’ (ASCII 0x0C) at the
beginning of the first line on the comment block that precedes the function definition.

 Embedded C Coding Standard

 43

Example:

int

state_change (int event)

{

 int result = ERROR;

 if (EVENT_A == event)

 {

 result = STATE_A;

 }

 else

 {

 result = STATE_B;

 }

 return (result);

}

Reasoning: Code reviews take place at the function level and often on paper. Each
function should thus ideally be visible on a single printed page, so that flipping
papers back and forth does not distract the reviewers.

Multiple return statements should be used only when it improves the
readability of the code.

Enforcement: Compliance with these rules shall be checked during code reviews.

Embedded C Coding Standard

 44

6.3 Function-Like Macros

Rules:

a. Parameterized macros shall not be used if a function can be written
to accomplish the same behavior.

b. If parameterized macros are used for some reason, these rules apply:

i. Surround the entire macro body with parentheses.

ii. Surround each use of a parameter with parentheses.

iii. Use each parameter no more than once, to avoid unintended
side effects.

iv. Never include a transfer of control (e.g., return keyword).

Example:

// Don’t do this ...

#define MAX(A, B) ((A) > (B) ? (A) : (B))

// ... when you can do this instead.

inline int max(int num1, int num2)

Reasoning: There are a lot of risks associated with the use of preprocessor defines,
and many of them relate to the creation of parameterized macros. The extensive use
of parentheses (as shown in the example) is important, but does not eliminate the
unintended double increment possibility of a call such as MAX(i++, j++). Other
risks of macro misuse include comparison of signed and unsigned data or any test of
floating-point data. Making matters worse, macros are invisible at run-time and
thus impossible to step into within the debugger.

Where performance is important, note that C99 added C++’s inline keyword.

Enforcement: These rules shall be enforced during code reviews.

 Embedded C Coding Standard

 45

6.4 Threads of Execution

Rules:

a. All functions that encapsulate threads of execution (a.k.a., tasks, processes)
shall be given names ending with “_thread” (or “_task”, “_process”).

Example:

void

alarm_thread (void * p_data)

{

 alarm_t alarm = ALARM_NONE;

 int err = OS_NO_ERR;

 for (;;)

 {

 alarm = OSMboxPend(alarm_mbox, &err);

 // Process alarm here.

 }

}

Reasoning: Each task in a real-time operating system (RTOS) is like a mini-main(),
typically running forever in an infinite loop. It is valuable to easily identify these
important, asynchronous functions during code reviews and debugging sessions.

Enforcement: This rule shall be followed during the detailed design phase and
enforced during code reviews.

Embedded C Coding Standard

 46

6.5 Interrupt Service Routines

Rules:

a. Interrupt service routines (ISRs) are not ordinary functions. The compiler
must be informed that the function is an ISR by way of a #pragma or
compiler-specific keyword, such as “__interrupt”.

b. All functions that implement ISRs shall be given names ending with “_isr”.

c. To ensure that ISRs are not inadvertently called from other parts of the
software (they may corrupt the CPU and call stack if this happens),
each ISR function shall be declared static and/or be located at the
end of the associated driver module as permitted by the target platform.

d. A stub or default ISR shall be installed in the vector table at the location of all
unexpected or otherwise unhandled interrupt sources. Each such stub could
attempt to disable future interrupts of the same type, say at the interrupt
controller, and assert().

 Embedded C Coding Standard

 47

Example:

#pragma irq_entry

void

timer_isr (void)

{

 uint8_t static prev = 0x00; // prev button states

 uint8_t curr = *gp_button_reg; // curr button states

 // Compare current and previous button states.

 g_debounced |= (prev & curr); // record all closes

 g_debounced &= (prev | curr); // record all opens

 // Save current pin states for next interrupt

 prev = curr;

 // Acknowledge timer interrupt at hardware, if necessary.

}

Reasoning: An ISR is an extension of the hardware. By definition, it and the
straight-line code are asynchronous to each other. If they share global variables or
registers, those singleton objects must be protected via interrupt disables in the
straight-line code. The ISR must not get hung up inside the operating system or
waiting for a variable or register to change value.

Note that platform-specific ISR installation steps vary and may require ISRs
functions to have prototypes and in other ways be visible to at least one other
function.

Although stub interrupt handlers don’t directly prevent defects, they can
certainly make a system more robust in real-world operating conditions.

Enforcement: These rules shall be enforced during code reviews.

Embedded C Coding Standard

 48

7 Variable Rules

7.1 Naming Conventions

Rules:

a. No variable shall have a name that is a keyword of C, C++, or any
other well-known extension of the C programming language,
including specifically K&R C and C99. Restricted names include
interrupt, inline, restrict, class, true, false, public, private,
friend, and protected.

b. No variable shall have a name that overlaps with a variable name
from the C Standard Library (e.g., errno).

c. No variable shall have a name that begins with an underscore.

d. No variable name shall be longer than 31 characters.

e. No variable name shall be shorter than 3 characters, including loop counters.

f. No variable name shall contain any uppercase letters.

g. No variable name shall contain any numeric value that is called out
elsewhere, such as the number of elements in an array or the number of bits
in the underlying type.

h. Underscores shall be used to separate words in variable names.

i. Each variable’s name shall be descriptive of its purpose.

j. The names of any global variables shall begin with the letter ‘g’.
For example, g_zero_offset.

k. The names of any pointer variables shall begin with the letter ‘p’.
For example, p_led_reg.

l. The names of any pointer-to-pointer variables shall begin with the letters ‘pp’.
For example, pp_vector_table.

 Embedded C Coding Standard

 49

m. The names of all integer variables containing Boolean information
(including 0 vs. non-zero) shall begin with the letter ‘b’ and phrased
as the question they answer. For example, b_done_yet or
b_is_buffer_full.

n. The names of any variables representing non-pointer handles for objects, e.g.,
file handles, shall begin with the letter ‘h’. For example, h_input_file.

o. In the case of a variable name requiring multiple of the above prefixes, the
order of their inclusion before the first underscore shall be [g][p|pp][b|h].

Example: See Appendix D.

Reasoning: The base rules are adopted to maximize code portability across
compilers. Many C compilers recognize differences only in the first 31 characters in
a variable’s name and reserve names beginning with an underscore for internal
names.

The other rules are meant to highlight risks and ensure consistent proper use of
variables. For example, all code relating to the use of global variables and other
singleton objects, including peripheral registers, needs to be carefully considered to
ensure there can be no race conditions or data corruptions via asynchronous writes.

Enforcement: These rules shall be enforced during code reviews.

Embedded C Coding Standard

 50

7.2 Initialization

Rules:

a. All variables shall be initialized before use.

b. It is preferable to define local variables as you need them, rather than all at
the top of a function.

c. If project- or file-global variables are used, their definitions shall be grouped
together and placed at the top of a source code file.

d. Any pointer variable lacking an initial address shall be initialized to NULL.

Example:

uint32_t g_array[NUM_ROWS][NUM_COLS] = { ... };

...

 for (int col = 0; col < NUM_COLS; col++)

 {

 g_array[row][col] = ...;

 }

Reasoning: Too many programmers assume the C run-time will watch out for them,
e.g., by zeroing the value of uninitialized variables on system startup. This is a bad
assumption, which can prove dangerous in a mission-critical system. For readability

reasons it is better to declare local variables as close as possible to their first use, 10

which C99 makes possible by incorporating that earlier feature of C++.

Enforcement: An automated tool shall scan all of the source code prior to each build,
to warn about variables used prior to initialization; static analysis tools can do this.
The remainder of these rules shall be enforced during code reviews.

10 [Uwano] describes back-and-forth code review eye movements that demonstrate the value
of placing variable declarations as close as possible to the code that first references them.

 Embedded C Coding Standard

 51

8 Statement Rules

8.1 Variable Declarations

Rules:

a. The comma operator (,) shall not be used within variable
declarations.

Example:

char * x, y; // Was y intended to be a pointer also? Don’t do this.

Reasoning: The cost of placing each declaration on a line of its own is low. By
contrast, the risk that either the compiler or a maintainer will misunderstand your
intentions is high.

Enforcement: This rule shall be enforced during code reviews.

Embedded C Coding Standard

 52

8.2 Conditional Statements

Rules:

a. It is a preferred practice that the shortest (measured in lines of code) of the if
and else if clauses should be placed first.

b. Nested if…else statements shall not be deeper than two levels. Use function
calls or switch statements to reduce complexity and aid understanding.

c. Assignments shall not be made within an if or else if test.

d. Any if statement with an else if clause shall end with an else clause.11

Example:

if (NULL == p_object)

{

 result = ERR_NULL_PTR;

}

else if (p_object = malloc(sizeof(object_t))) // No assignments!

{

 ...

}

else

{

 // Normal processing steps, which require many lines of code.

 ...

}

Reasoning: Long clauses can distract the human eye from the decision-path logic.
By putting the shorter clause earlier, the decision path becomes easier to follow.
(And easier to follow is always good for reducing bugs.) Deeply nested if…else
statements are a sure sign of a complex and fragile state machine implementation;
there is always a safer and more readable way to do the same thing.

Enforcement: These rules shall be enforced during code reviews.

11 This is the equivalent of requiring a default case in every switch statement.

 Embedded C Coding Standard

 53

8.3 Switch Statements

Rules:

a. The break for each case shall be indented to align with the
associated case, rather than with the contents of the case code block.

b. All switch statements shall contain a default block.

c. Any case designed to fall through to the next shall be commented to clearly
explain the absence of the corresponding break.

Example:

switch (err)

{

 case ERR_A:

 ...

 break;

 case ERR_B:

 ...

 // Also perform the steps for ERR_C.

 case ERR_C:

 ...

 break;

 default:

 ...

 break;

}

Reasoning: C’s switch statements are powerful constructs, but prone to errors such
as omitted break statements and unhandled cases. By aligning the case labels with
their break statements it is easier to spot a missing break.

Enforcement: These rules shall be enforced during code reviews.

Embedded C Coding Standard

 54

8.4 Loops

Rules:

a. Magic numbers shall not be used as the initial value or in the endpoint test of

a while, do…while, or for loop.12

b. With the exception of the initialization of a loop counter in the first clause of a
for statement and the change to the same variable in the third, no assignment
shall be made in any loop’s controlling expression.

c. Infinite loops shall be implemented via controlling expression for (;;).13

d. Each loop with an empty body shall feature a set of braces enclosing a
comment to explain why nothing needs to be done until after the loop
terminates.

Example:

// Why would anyone bury a magic number (e.g., “100”) in their code?

for (int row = 0; row < 100; row++)

{

 // Descriptively-named constants prevent defects and aid readability.

 for (int col = 0; col < NUM_COLS; col++)

 {

 ...

 }

Reasoning: It is always important to synchronize the number of loop iterations to
the size of the underlying data structure. Doing this via a descriptively-named
constant prevents defects that result when changes in one part of the code, such as
the dimension of an array, are not matched in other areas of the code.

Enforcement: These rules shall be enforced during code reviews.

12 Note that the sizeof macro is a theoretically handy way to dimension an array but that
this method does not work when you pass a pointer to the array instead of the array itself.
13 Kernighan & Ritchie long ago recommended for (;;) , which has the additional benefit
of insuring against the visually-confusing defect of a while (l); referencing a variable ‘l’.

 Embedded C Coding Standard

 55

8.5 Jumps

Rules:

a. The use of goto statements shall be restricted as per Rule 1.7.c.

b. C Standard Library functions abort(), exit(), setjmp(), and longjmp()
shall not be used.

Reasoning: Algorithms that utilize jumps to move the instruction pointer can and
should be rewritten in a manner that is more readable and thus easier to maintain.

Enforcement: These rules shall be enforced by an automated scan of all modified or
new modules for inappropriate use of forbidden tokens. To the extent that the use of
goto is permitted, code reviewers should investigate alternative code structures to
improve code maintainability and readability.

Embedded C Coding Standard

 56

8.6 Equivalence Tests

Rules:

a. When evaluating the equality of a variable against a constant, the
constant shall always be placed to the left of the equal-to operator
(==).

Example:

if (NULL == p_object)

{

 return (ERR_NULL_PTR);

}

Reasoning: It is always desirable to detect possible typos and as many other coding
defects as possible at compile-time. Defect discovery in later phases is not
guaranteed and often also more costly. By following this rule, any compiler will
reliably detect erroneous attempts to assign (i.e., = instead of ==) a new value to a
constant.

Enforcement: Many compilers can be configured to warn about suspicious
assignments (i.e., located where comparisons are more typical). However, ultimate
responsibility for enforcement of this rule falls to code reviewers.

 Embedded C Coding Standard

 57

Appendix A: Table of Abbreviations

The following abbreviations and acronyms are accepted for use in source code
without local explanation.

Abbreviation Meaning

adc analog-to-digital converter

avg average

b_ Boolean

buf buffer

cfg configuration

curr current (item in a list)

dac digital-to-analog converter

ee EEPROM

err error

g_ global

gpio general-purpose I/O pins

h_ handle (to)

init initialize

io input/output

isr interrupt service routine

lcd liquid crystal display

led light-emitting diode

max maximum

mbox mailbox

mgr manager

min minimum

Embedded C Coding Standard

 58

msec millisecond14

msg message

next next (item in a list)

nsec nanosecond

num number (of)

p_ pointer (to)

pp_ pointer to a pointer (to)

prev previous (item in a list)

prio priority

pwm pulse width modulation

q queue

reg register

rx receive

sem semaphore

str string (null terminated)

sync synchronize

temp temperature

tmp temporary

tx transmit

usec microsecond

14 Note that second(s) shall not be abbreviated, nor minute, hour, day, week, month, or year.
Among other things, this rule eliminates conflict between minute and minimum (for “min”).

 Embedded C Coding Standard

 59

Appendix B: Header File Template

/** @file module.h

 *

 * @brief A description of the module’s purpose.

 *

 * @par

 * COPYRIGHT NOTICE: (c) 2018 Barr Group. All rights reserved.

 */

#ifndef MODULE_H

#define MODULE_H

int8_t max8(int8_t num1, int8_t num2);

#endif /* MODULE_H */

/*** end of file ***/

Embedded C Coding Standard

 60

Appendix C: Source File Template

/** @file module.c

 *

 * @brief A description of the module’s purpose.

 *

 * @par

 * COPYRIGHT NOTICE: (c) 2018 Barr Group. All rights reserved.

 */

#include <stdint.h>

#include <stdbool.h>

#include “module.h”

/*!

 * @brief Identify the larger of two 8-bit integers.

 *

 * @param[in] num1 The first number to be compared.

 * @param[in] num2 The second number to be compared.

 *

 * @return The value of the larger number.

 */

int8_t

max8 (int8_t num1, int8_t num2)

{

 return ((num1 > num2) ? num1 : num2);

}

/*** end of file ***/

 Embedded C Coding Standard

 61

Appendix D: Example Program
/** @file crc.h

 *

 * @brief Compact CRC library for embedded systems for CRC-CCITT, CRC-16, CRC-32.

 *

 * @par

 * COPYRIGHT NOTICE: (c) 2000, 2018 Michael Barr. This software is placed in the

 * public domain and may be used for any purpose. However, this notice must not

 * be changed or removed. No warranty is expressed or implied by the publication

 * or distribution of this source code.

 */

#ifndef CRC_H

#define CRC_H

// Compile-time selection of the desired CRC algorithm.

//

#if defined(CRC_CCITT)

#define CRC_NAME "CRC-CCITT"

typedef uint16_t crc_t;

#elif defined(CRC_16)

#define CRC_NAME "CRC-16"

typedef uint16_t crc_t;

#elif defined(CRC_32)

#define CRC_NAME "CRC-32"

typedef uint32_t crc_t;

#else

#error "One of CRC_CCITT, CRC_16, or CRC_32 must be #define'd."

#endif

Embedded C Coding Standard

 62

// Public API functions provided by the Compact CRC library.

//

void crc_init(void);

crc_t crc_slow(uint8_t const * const p_message, int n_bytes);

crc_t crc_fast(uint8_t const * const p_message, int n_bytes);

#endif /* CRC_H */

/*** end of file ***/

 Embedded C Coding Standard

 63

/** @file crc.c

 *

 * @brief Compact CRC generator for embedded systems, with brute force and table-

 * driven algorithm options. Supports CRC-CCITT, CRC-16, and CRC-32 standards.

 *

 * @par

 * COPYRIGHT NOTICE: (c) 2000, 2018 Michael Barr. This software is placed in the

 * public domain and may be used for any purpose. However, this notice must not

 * be changed or removed. No warranty is expressed or implied by the publication

 * or distribution of this source code.

 */

#include <stdint.h>

#include "crc.h"

// Algorithmic parameters based on CRC elections made in crc.h.

//

#define BITS_PER_BYTE 8

#define WIDTH (BITS_PER_BYTE * sizeof(crc_t))

#define TOPBIT (1 << (WIDTH - 1))

// Allocate storage for the byte-wide CRC lookup table.

//

#define CRC_TABLE_SIZE 256

static crc_t g_crc_table[CRC_TABLE_SIZE];

Embedded C Coding Standard

 64

// Further algorithmic configuration to support the selected CRC standard.

//

#if defined(CRC_CCITT)

#define POLYNOMIAL ((crc_t) 0x1021)

#define INITIAL_REMAINDER ((crc_t) 0xFFFF)

#define FINAL_XOR_VALUE ((crc_t) 0x0000)

#define REFLECT_DATA(X) (X)

#define REFLECT_REMAINDER(X) (X)

#elif defined(CRC_16)

#define POLYNOMIAL ((crc_t) 0x8005)

#define INITIAL_REMAINDER ((crc_t) 0x0000)

#define FINAL_XOR_VALUE ((crc_t) 0x0000)

#define REFLECT_DATA(X) ((uint8_t) reflect((X), BITS_PER_BYTE))

#define REFLECT_REMAINDER(X) ((crc_t) reflect((X), WIDTH))

#elif defined(CRC_32)

#define POLYNOMIAL ((crc_t) 0x04C11DB7)

#define INITIAL_REMAINDER ((crc_t) 0xFFFFFFFF)

#define FINAL_XOR_VALUE ((crc_t) 0xFFFFFFFF)

#define REFLECT_DATA(X) ((uint8_t) reflect((X), BITS_PER_BYTE))

#define REFLECT_REMAINDER(X) ((crc_t) reflect((X), WIDTH))

#endif

 Embedded C Coding Standard

 65

/*!

 * @brief Compute the reflection of a set of data bits around its center.

 * @param[in] data The data bits to be reflected.

 * @param[in] num2 The number of bits.

 * @return The reflected data.

 */

static uint32_t

reflect (uint32_t data, uint8_t n_bits)

{

 uint32_t reflection = 0x00000000;

 // NOTE: For efficiency sake, n_bits is not verified to be <= 32.

 // Reflect the data about the center bit.

 //

 for (uint8_t bit = 0; bit < n_bits; ++bit)

 {

 // If the LSB bit is set, set the reflection of it.

 //

 if (data & 0x01)

 {

 reflection |= (1 << ((n_bits - 1) - bit));

 }

 data = (data >> 1);

 }

 return (reflection);

} /* reflect() */

Embedded C Coding Standard

 66

/*!

 * @brief Initialize the lookup table for byte-by-byte CRC acceleration.

 *

 * @par

 * This function must be run before crc_fast() or the table stored in ROM.

 */

void

crc_init (void)

{

 // Compute the remainder of each possible dividend.

 //

 for (crc_t dividend = 0; dividend < CRC_TABLE_SIZE; ++dividend)

 {

 // Start with the dividend followed by zeros.

 //

 crc_t remainder = dividend << (WIDTH - BITS_PER_BYTE);

 // Perform modulo-2 division, a bit at a time.

 //

 for (int bit = BITS_PER_BYTE; bit > 0; --bit)

 {

 // Try to divide the current data bit.

 //

 if (remainder & TOPBIT)

 {

 remainder = (remainder << 1) ^ POLYNOMIAL;

 }

 else

 {

 remainder = (remainder << 1);

 }

 }

 // Store the result into the table.

 //

 g_crc_table[dividend] = remainder;

 }

} /* crc_init() */

 Embedded C Coding Standard

 67

/*!

 * @brief Compute the CRC of an array of bytes, bit-by-bit.

 * @param[in] p_message A pointer to the array of data bytes to be CRC'd.

 * @param[in] n_bytes The number of bytes in the array of data.

 * @return The CRC of the array of data.

 */

crc_t

crc_slow (uint8_t const * const p_message, int n_bytes)

{

 crc_t remainder = INITIAL_REMAINDER;

 // Perform modulo-2 division, one byte at a time.

 //

 for (int byte = 0; byte < n_bytes; ++byte)

 {

 // Bring the next byte into the remainder.

 //

 remainder ^= (REFLECT_DATA(p_message[byte]) << (WIDTH - BITS_PER_BYTE));

 // Perform modulo-2 division, one bit at a time.

 //

 for (int bit = BITS_PER_BYTE; bit > 0; --bit)

 {

 // Try to divide the current data bit.

 //

 if (remainder & TOPBIT)

 {

 remainder = (remainder << 1) ^ POLYNOMIAL;

 }

 else

 {

 remainder = (remainder << 1);

 }

 }

 }

 // The final remainder is the CRC result.

 //

 return (REFLECT_REMAINDER(remainder) ^ FINAL_XOR_VALUE);

} /* crc_slow() */

Embedded C Coding Standard

 68

/*!

 * @brief Compute the CRC of an array of bytes, byte-by-byte.

 * @param[in] p_message A pointer to the array of data bytes to be CRC'd.

 * @param[in] n_bytes The number of bytes in the array of data.

 * @return The CRC of the array of data.

 */

crc_t

crc_fast (uint8_t const * const p_message, int n_bytes)

{

 crc_t remainder = INITIAL_REMAINDER;

 // Divide the message by the polynomial, a byte at a time.

 //

 for (int byte = 0; byte < n_bytes; ++byte)

 {

 uint8_t data = REFLECT_DATA(p_message[byte]) ^

 (remainder >> (WIDTH - BITS_PER_BYTE));

 remainder = g_crc_table[data] ^ (remainder << BITS_PER_BYTE);

 }

 // The final remainder is the CRC.

 //

 return (REFLECT_REMAINDER(remainder) ^ FINAL_XOR_VALUE);

} /* crc_fast() */

/*** end of file ***/

 Embedded C Coding Standard

 69

Bibliography

[Barr] Barr, Michael. “Programming Embedded Systems in C and C++.”
O’Reilly, 1999.

[C90] “ISO/IEC9899:1990, Programming Languages – C,” ISO, 1990.

[C99] “ISO/IEC9899:1999, Programming Languages – C,” ISO, 1999.

[CERT-C] Seacord, Robert C. “The CERT C Coding Standard, Second Edition.”
Pearson, 2014.

[Harbison] Harbison III, Samuel P. and Guy L. Steele, Jr. “C: A Reference Manual,
Fifth Edition.” Prentice Hall, 2002.

[Hatton] Hatton, Les. “Safer C: Developing Software for High-Integrity and Safety-
Critical Systems.” McGraw-Hill, 1994.

[Holub] Holub, Allen I. “Enough Rope to Shoot Yourself in the Foot: Rules for C
and C++ Programming.” McGraw-Hill, 1995.

[IEC61508] “Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems,” International Electromechanical Commission,
1998-2000.

[Koenig] Koenig, Andrew. “C Traps and Pitfalls.” Addison-Wesley, 1988.

[Loudon] Loudon, Kyle. “C++ Pocket Reference.” O’Reilly, 2003.

[MISRA-C] “MISRA C:2012 Guidelines for the use of the C language in critical
systems,” MIRA, March 2013.

[MISRA-C++] “MISRA C++ Guidelines for the use of the C++ language in critical
systems,” MIRA, June 2008.

[Prinz] Prinz, Peter and Ulla Kirch-Prinz. “C Pocket Reference.” O’Reilly, 2003.

[Sutter] Sutter, Herb and Andrei Alexandrescu. “C++ Coding Standards: 101
Rules, Guidelines, and Best Practices.” Pearson, 2005.

[Uwano] Uwano, H., Nakamura, M., Monden, A., and Matsumoto, K. “Analyzing
Individual Performance of Source Code Review Using Reviewer’s Eye
Movement,” Proceedings of the 2006 Symposium on Eye Tracking Research &
Applications, San Diego, March 27-29, 2006.

Embedded C Coding Standard

 70

Index

SYMBOLS
-- decrement operator 21
- subtraction/unary-minus operator 21
! logical-negation operator 21
!= not-equal-to operator 21, 39
preprocessor token 23
% modulo operator 21
& address/bitwise-and operator 21, 35
&& logical-and operator 11, 21
* indirection/multiplication operator 21
+ addition/unary-plus operator 5, 21
++ increment operator 21
. component selection operator 21
, comma operator 21, 51
; statement terminator 22
/ division operator 21
//, /*, and */ comment delimiters 17
[] subscripting operator 21
^ bitwise-xor operator 21, 35
{} braces 1, 10, 54
() parentheses 11, 21, 44
| bitwise-or operator 21, 35
|| logical-or operator 11, 21
< less-than operator 21
<< left-shift operator 21, 35
<= less-or-equal operator 21
=, +=, -=, *=, /=, %=, &=, |=, ^=, ~=, and!=

assignment operators 21

== equal-to operator 21
-> component-selection operator 21
> greater-than operator 21
>= greater-or-equal operator 21
>> right-shift operator 21, 35
?: ternary operator 21
~ bitwise-negation operator 21, 35

A
abbreviations 12, 57-58
abort() function 55
acronyms 12, 57-58
algorithms 18
alignment 23, 25, 27
anonymous declarations 33
architecture 1, 2
array subscripts ([]) 21
arrays 48, 50, 54
assembly language 8
assert() function 17, 46
assignment expressions 52, 54
assignment operators 21, 23
assumptions 18, 19
asynchronous 45, 47, 49
auto storage class specifier 14

 Embedded C Coding Standard

 71

B
binary data 35
binary operators 21
bit-fields 35, 37-38
bit ordering 37-38
bitwise operators 35
blank lines 18, 23, 24
blocks of code 10, 23, 24
bool type 39
Booleans 8, 39, 49
braces ({}) 1, 10, 54
break statements 25, 53
bus 37

C
C run-time 50
C Standard Library 29, 40, 48, 55
C++ 7, 5, 8, 17, 29, 48
C++-style comments 17, 18
C90 3, 34, 39
C99 3, 8, 34, 35, 36, 39, 44, 48, 50
call-by-reference 15
call stack 46
carriage return character 28
case labels 25, 53
casts 13, 39
char type 34, 51
code beautifiers 22, 26
code differencing 6, 9
code reviews 2, 5
comma operator 21, 51
commented-out code 17
comments 3, 6, 8, 17- 20, 24, 31, 32, 42, 54
communication protocols 31
comparisons 35, 56

compiler optimizations 16
compile-time checks 34, 38
compound statements 10
conditional compilation 17
const type qualifier 15-16
constants 30, 31, 35, 36, 54, 56
continue statements 14
control flow 14
coupling 16, 30

D
data types 30, 31, 33-39
debug output 17
default labels 25, 52-53
defect tracking 2
#define directive 8, 15, 30, 44
delay loops 15, 19
design-by-contract 18
design reviews 2
deviations 6
device drivers 8, 31
do…while statements 10, 54
double precision 36
double type 36
Doxygen tool 18, 20

E
else statements 10, 24, 42, 52
empty statements 10
end-of-line comments 17, 18
end of file 24
#endif directive 17, 30
enum keyword 33
enumerations 33
equal-to operator (==) 3, 56

Embedded C Coding Standard

 72

equivalence tests 36, 56
exceptional circumstances 1, 14
exit() function 55
extern storage class specifier 30

F
false constant 39, 40, 48
file paths, absolute 31
fixed-point math 36
fixed-width integer types 3, 34, 38
float32_t type 36
float64_t type 36
float128_t type 36
floating point 36
flow charts 18
for statements 10, 21, 22, 54
form feed character 28, 42
function prototypes 31, 47
functions 3, 15, 16, 20, 30, 40, 42-43, 45, 46
function-like macros 44

G
glitches 16
global scope 30
global variables 15-16, 30, 47, 48-49, 50
GNU Indent tool 22
goto statements 4, 14, 55

H
handles for objects 49
hardware failures 1
header file templates 32, 59
header files 29, 30, 31, 32, 42

I
#if directive 17, 23
if statements 10, 21, 24, 52
#ifdef directive 23
#ifndef directive 17, 30
implementation-defined behaviors 3, 35, 38
#include directive 30, 31
include files 31
indentation 6, 10, 18, 25-26, 27, 53
infinite loops 45
INFINITY constant 36
inline keyword 40, 44, 48
inline functions 8, 44
instruction pointer 55
int type 34
int8_t type 34
int16_t type 34, 35
int32_t type 3, 34
int64_t type 34
interrupts 15, 46-47
interrupt service routines 15, 46-47
isfinite() macro 36
ISO C 3, 8, 13, 35, 38

J
jumps 14, 55

K
K&R C 48

L
legacy code 5, 6
libraries 6, 36

 Embedded C Coding Standard

 73

limits.h header file 36
line feed character 28
line widths 9, 25
line wraps 26
local variables 8, 50
long type 34
long long type 34
longjmp() function 55
loop counters 15, 19, 48, 54
loops 24, 45, 54

M
macros, preprocessor 30, 31, 40, 44
magic numbers 54
main() function 29, 45
malloc() function 52
memory-mapped I/O 15
MISRA 4, 5, 35
modules 3, 6, 15, 18, 20, 29-32, 40, 55

N
naming conventions 4, 21, 29, 33, 40, 48-49
NAN constant 36
NDEBUG constant 17
nested comments 17
nested if blocks 52
network 37
non-printing characters 28
NULL constant 50, 52, 56

O
operating systems 45, 47
operator precedence 11
optimization, compiler 16, 19

P
padding bytes 37
parameters 15, 20, 21, 42, 44
parentheses 11, 21, 44
peripheral 37
peripheral drivers 31
peripheral registers 15-16, 33, 37, 47, 49
pointers 15, 21, 48, 50, 54
pointer variables 48
pointer-to-pointer variables 48
portability 1, 2, 3, 34, 38, 49
#pragma directive 8, 30, 46
precedence rules 11
preprocessor 17, 23, 28, 30, 38, 44
preprocessor guards 30
preprocessor macros 28, 30, 44
private functions 31, 42
procedures 30, 40-47
processes 45
prototypes 30, 31, 47
public data types 33
public functions 31, 40, 42

R
readability 2, 24, 43, 50, 54
register storage class specifier 4, 14
registers 15-16, 33, 37, 47, 49
relational operators 39
reliability 1, 3
requirements 1
return statements 13, 21, 42, 43, 44
RTOS 45

Embedded C Coding Standard

 74

S
safety guidelines 2
semicolons 22
setjmp() function 55
short type 18, 34
side effects 44
signed integers 13, 34, 35, 44
signed type specifier 13, 34, 35
singleton objects 47, 49
sizeof macro 37, 52, 54
source file templates 32, 60
source files 29, 30, 31, 32
stack 46
static storage class specifier 15-16, 42, 46
static analysis 2, 5
static assertions 34, 38
stdbool.h header file 39
stdint.h header file 34
storage, allocation of 30
strings 34
struct keyword 15, 23, 33, 37
struct overlays 15
structures 15, 21, 23, 33, 37-38
structured programming 14
switch statements 10, 21, 24, 25, 52, 53
system startup 50

T
tabs 6, 27
tasks 45
ternary operator (?:) 21
threads 15, 45
true constant 39, 40, 48
typedef keyword 33
typedefs 30, 34

U
uint8_t type 34
uint16_t type 34
uint32_t type 34
uint64_t type 34
unary operators 21
unconditional jumps 14, 55
underscores 29, 33, 40, 48
unhandled cases 53
uninitialized variables 50
union keyword 23, 33, 37
unions 15, 23, 33, 37-38
unsigned integers 13, 34, 35, 44
unsigned type specifier 13, 34, 35

V
variable declarations 8, 50, 51
variable initialization 50
variables 3, 8, 15, 16, 23, 33, 36, 39, 40,

48-49, 50, 56
version control 2, 6, 12, 18
volatile type qualifier 15-16

W
while statements 10, 21, 54
white space 6, 21-28

About Barr Group

Barr Group, The Embedded Systems Experts®, is an independent provider

of engineering consulting and training services for the embedded systems

industry. Barr Group has developed and published this bug-killing coding

standard as part of its mission to help product design engineers improve

the overall reliability and security of their embedded systems.

barrgroup.com Copyright © 2018 by Barr Group

About the Author

Michael Barr is the CTO and co-founder of Barr Group. Mr. Barr is a former adjunct

professor of electrical and computer engineering with hands-on software design and

implementation experience across a range of industries. Internationally recognized as an

expert in the field of embedded software architecture and development processes, Barr

has testified as an expert witness in courts in the U.S. and Canada. Barr is also the author

of Programming Embedded Systems in C and C++ and the Embedded Systems Dictionary, as

well as over seventy articles and papers about the design of embedded systems. He has

served as editor-in-chief of Embedded Systems Programming magazine as well as a member

of the advisory board and a track chair for the Embedded Systems Conference. Barr holds

B.S. and M.S. degrees in electrical engineering from the University of Maryland.

“Barr Group’s Embedded C Coding Standard provided the foundation needed by
Pole/Zero as we developed our own embedded firmware coding standard document.”

 Kevin Ehlert, Digital Design Engineer, Pole/Zero

“Barr Group’s training and consulting in coding standards and MISRA C was instrumental as
Datalight created our Reliance Edge file system product for use in safety-critical systems.”

Tony Questad, Director of Engineering, Datalight

“The Embedded C Coding Standard saved us considerable time in
developing our own bug-reducing coding standard."
Ed Lukas, Electrical Engineering Manager, Chamberlain

Barr Group's Embedded C Coding Standard was developed to help firmware engineers minimize defects in embedded

systems. Unlike the majority of coding standards, this standard focuses on practical rules that keep bugs out — including

techniques designed to improve the maintainability and portability of embedded software. The rules in this coding

standard include a set of guiding principles, as well as specific naming conventions and other rules for the use of data

types, functions, preprocessor macros, variables, and other C language constructs. Individual rules that have been

demonstrated to reduce or eliminate certain types of defects are highlighted.

The BARR-C standard is distinct from, yet compatible with, the MISRA C Guidelines for Use of the C Language in Critical
Systems. Programmers can easily combine rules from the two standards as needed.

	Blank Page

